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Abstract
Millimeter wave (mmWave) radar sensing is essential for Integrated

Sensing and Communication (ISAC) but is limited by the need for

line-of-sight (LoS) in environments with obstacles. However, exist-

ing non-line-of-sight (NLoS) solutions, including those leveraging

reconfigurable intelligent surfaces (RIS) are computationally de-

manding, unable to generalize to new surroundings or require tight

synchronization/coordination that prevent practical deployments.

We propose PRISM, a framework that brings the diversity of a RIS to

monostatic radars to enhance target resolution in NLoS, all without

requiring real-time coordination. PRISM uses spatial modulation at

the RIS to encode targets’ angular information through frequency

shifts by creating a time-variant channel for improved detection at

the radar. Key contributions include a wideband spatial modulation

framework, a genetic algorithm to efficiently solve for the RIS con-

figuration to enable such angle-dependent frequency shifts, and a

narrowband approximation method to reduce the computational

overhead. Evaluations show PRISM benefits chirp-based radars by

reducing mean localization error to 31 cm and maintaining 80%

target detection accuracy for up to six targets in NLoS compared

to 103 cm error and 66% accuracy with prior art, while providing a

12x reduction in computation time.
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1 Introduction
Integrated Sensing andCommunication (ISAC) systems have emerged

as a key paradigm in 5G/6G systems, aiming to unify radar sensing

and wireless communication on a shared infrastructure [1]. For ex-

ample, dual-function radar-communication (DFRC) systems [2, 3]

leverage shared waveforms—such as chirp or FMCW—and common

hardware to perform both sensing and communication tasks si-

multaneously, thereby improving spectral and hardware efficiency.

However, both mmWave communication and sensing are limited

by the crucial requirement of line-of-sight (LoS), i.e., a direct path

between the radar and the target, for several applications [4, 5].

Fig. 1 illustrates a practical indoor deployment where the presence

of walls and narrow corridors is unavoidable. Particularly for a

sensing system, limiting the maximum detection area solely to LoS

(area colored in blue) decreases its utility and makes the need to

sense targets around corners (area colored in red) more pressing.

To bridge this gap, we propose a practical approach leveraging

reconfigurable intelligent surfaces (RIS) to enhance NLoS sensing,

thereby enabling more robust ISAC solutions.

In the past, several data-driven solutions have been proposed to

localize non-line-of-sight (NLoS) targets using the radar’s coarse

point cloud [6–8]. These solutions fall short of practical deployment

due to increased computational requirements, inaccuracies in envi-

ronmental modeling, and the inherently limited spatial resolution of

Figure 1: An illustration of a) orthographic projection of a
typical system setup, b) top-view of system setup

the radar. The root cause of problems in indoor deployments is the

seemingly uncontrollable multipath propagation which creates un-

predictable pseudo-targets in the radar’s point cloud confounding

the detection of true targets as illustrated in Fig. 3.

Reconfigurable Intelligent Surfaces (RIS) are a promising para-

digm for controlling signal propagation paths within the environ-

ment. Most prior work involving RIS has focused on improving

communication capabilities [9–12]. In contrast to communication

systems that are naturally bistatic (active transmitter and receiver),

practical mmWave sensing is accomplished using monostatic radar

signal processing. For monostatic radar sensing to benefit from RIS

reflections, the latter must be capable of conveying the angular

information of the targets. This is often achieved by the impracti-

cal assumption of tight synchronization and coordination between

radar and the RIS, allowing the radar to configure and know the

beam employed by the RIS at any instant. On the other hand, when

such a stringent requirement is eliminated, the angular information

of the reflected signals from the RIS corresponding to different

targets can no longer be differentiated. This poses a fundamental

challenge in leveraging RIS and its reflections for practical monos-

tatic radar sensing, forming our focus in this work.

To effectively aid monostatic radar sensing, the RIS-based deploy-

ment must meet several key requirements: (1) RIS must preserve

angular information for multiple targets simultaneously; (2) RIS

should be easily integrated into the existing chirp-based range-

Doppler analysis used by radars which would allow for seamless
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adoption into the system’s signal processing pipeline; (3) RIS config-

urations should not require real-time coordination with the radar

system. This independence simplifies the system design and re-

duces the need for complex synchronization mechanisms, making

RIS a more viable solution for enhancing monostatic radar sensing

capabilities in real-world deployments.

In this work, we introduce PRISM, a Practical RIS-based sensing

solution that employs SpatialModulation to provide robust angular

resolution in high multipath indoor environments without the need

for line-of-sight. Our passive methodology integrates a RIS into a

commodity radar’s sensing framework without modifying its signal

processing pipeline. At the heart of PRISM is a spatial modulation

framework for RIS that is readily compatible with any chirp-based

radar, offering enhanced angular resolution of targets without re-

quiring coordination between radar and RIS. The spatial modulation

approach leverages the wide bandwidth intermediate frequency

(IF) processing of radars to encode the target’s angular information

through frequency-shifts by the RIS (Fig. 2). By varying the phase

configuration of the RIS elements with a pre-defined sequence at

the order of several MHz, PRISM creates a controlled time-variant
channel between several targets and the radar through the RIS.

When the radar’s signal, reflected from the targets, propagates

through this time-variant channel, it undergoes shifts in frequency

that are dependent on its incoming angle. This allows the RIS to

encode the angular information of targets in the IF spectrum of the

signal reflected by it, allowing the radar to leverage its existing IF

processing techniques to isolate reflections from the environment

from those from the RIS. In essence, through the spatial modulation

framework, the RIS serves as distributed antenna elements of the

monostatic radar, seamlessly preserving the angular information

of targets while remaining robust across different environments,

thereby improving target resolution capabilities beyond those of

the radar itself.

Our contributions to the design of PRISM are three-fold: (1) a

novel, general-purpose, wideband spatial modulation framework

for frequency-shifting RIS that can be leveraged by monostatic

radars (commodity or DFRC systems); (2) a genetic algorithm to

solve for the RIS configurations; and (3) a narrowband approxima-

tion to accelerate computation. The spatial modulation framework

helps provide an accurate model to build the desired time-variant

channel and realize the frequency shifting effect with RIS that

works seamlessly with radars. However, obtaining the correspond-

ing space-time configurations that need to be applied to the RIS

to realize the desired frequency-space profile over the wide band-

width of the radar signal remains a challenging problem because

of its non-convex and high dimensional structure. We propose a

narrow-band approximation of the wideband problem that allow us

to efficiently solve it by instrumenting a genetic algorithm to suit

the nuances of space-time modulation, while incurring an order of

magnitude lower complexity compared to its wideband counterpart.

PRISM is extensively evaluated in real indoor environmentswhose

multipath channels are measured using a 5G FR2 (39 GHz) testbed

running an OAI stack [13] spanning both LoS and NLoS layouts

with varying number of targets. We supplement our evaluations

with multipath channels generated using Wireless InSite [14] for

indoor and outdoor deployments. Our evaluations highlight that

PRISM benefits radars with a 3.3x reduction in mean localization

Figure 2: Conceptual illustration of two-way signal propaga-
tion in a frequency-shifting RIS

error to 31 cm and maintains 80% target separation accuracy for up

to six targets in NLoS compared to 103 cm error and 66% accuracy

with prior art. Further, its increased spatial/angular resolution also

benefits LoS with superior multi-target target resolution capability

(𝐹1-score over 0.9) – all while reducing the computation time by

12x without sacrificing on the target detection accuracy. PRISM’s
practical approach allows commodity radars of today to readily

benefit from RIS in NLoS sensing.

2 Background & Motivation
2.1 Background & Related Work
In the past, several solutions have been proposed to overcome

challenges associated with sensing NLoS targets.

2.1.1 Ray tracing approaches. The process of ray tracing relies

on the ability to effectively model the geometry of the space as

well as the reflections off walls. Several works [15–19] resort to

heuristics to identify the targets or use methods that often assume

ideal environmental conditions, such as minimal multipath inter-

ference and predictable geometrical configurations of the environ-

ment, which limit their applicability in complex indoor settings.

Advanced ray tracing algorithms improve accuracy but come at

the cost of increased computational complexity and the need for

detailed environmental modeling.

2.1.2 Learning-based approaches. These approaches [6, 20] lever-
age machine learning models to interpret radar signals and predict

target locations. While promising, these methods fail to adapt to

scenarios not included in the training dataset. Furthermore, the

spatial resolution of these models is fundamentally limited by the

radar’s capabilities since the data obtained is radar-specific. Ad-

ditionally, models trained on data from high-resolution radars do

not generalize well to radars with poorer resolution, making the

approach less flexible.

2.1.3 RIS-based approaches. Augmenting the environment with

reflectors in known locations is a popular choice since it pro-

vides an additional dimension of information, thus offering a more

predictable and robust solution than learning-based approaches.

Within the class of solutions based on reflectors, there are two

categories: (1) passive reflectors (metasurfaces); and (2) RIS which

are low-cost reconfigurable surfaces.

In the category of passive reflectors, [21] employs amulti-reflector

setup with a gray-code to encode the angle of reflection. However,

[21] faces several limitations in indoor scenarios since the non-

orthogonal coding depends on a strong and singular path between



PRISM: Practical Design and Orchestration of Frequency-Shifting RIS for NLoS mmWave Sensing Conference’17, July 2017, Washington, DC, USA

the reflectors and the target. Relying on peak detection for tar-

get identification becomes problematic when multiple targets and

multipath reflections are present, which are common occurrences

in indoor environments, as we show in evaluations. Furthermore,

passive reflectors need to be designed for specific scenarios.

In contrast, a RIS is inherently reconfigurable, enabling it to adapt

to various environments and applications, including both sensing

and communications. However, integrating a RIS into a mmWave

sensing setup, especially with chirp-based radars, remains challeng-

ing. Prior solutions [22–30] involve an active RIS and/or fine-time

synchronization between the RIS and radar hardware to actively

reconfigure the RIS elements, a capability that is impractical to

realize with DFRC systems since it creates significant overheads

in both, spectral and temporal resources. Furthermore, some of

the aforementioned solutions involving MIMO and dual-function

radar-communication (DFRC) systems, necessitates the use of so-

phisticated signal processing and/or the complete redesign of the

transmitted waveform which decreases compatibility with the 5G

mmWave standard. In contrast, our proposed solution is compati-

ble with commonly-deployed chirp-based radar hardware since it

utilizes a passive spatial modulation framework at the RIS, which

eliminates the need for synchronization and coordination between

the radar and the RIS and dedicated MIMO/DFRC hardware.

2.2 Limitations in NLoS Sensing with RIS
In this section, we consider the requirements of a practical NLoS

scenario with a radar and several targets as illustrated in Fig. 3. As

discussed previously, augmenting such NLoS environments (i.e. no

direct path between the radar and targets) with a RIS is a favourable

choice. To avoid real-time coordination and synchronization be-

tween radar and RIS, we consider a practical solution that employs

a wide-beam configuration at the RIS to redirect electromagnetic

energy from a desired area of coverage (targets) to the radar. Fig. 3a

illustrates the aggregate spectrogram received at the radar using

CIRs extracted from Wireless InSite [14], showcasing significant

ambiguity in the resolution of 3 targets from the radar’s range

profile. This can be attributed to two key factors: (i) lost angular (az-

imuth) information of targets in RIS’ reflections, and (ii) increased

impact of multipath. The inability to coordinate and synchronize

at fine time scales with radars, prevents RIS from having narrow

beams since they can miss important target reflections. The re-

sulting drawback is both lost angular resolution of targets (closely

spaced targets appear indistinguishable) as well as reduced multi-

path suppression capability (desired target reflections confounded

by reflections from walls, furniture, etc.).

In summary, the key requirements of a RIS to aid in practical

NLoS sensing by a chirp-based radar are: (1) the ability to resolve

the angles of arrival of signals incoming from several directions

simultaneously; (2) enable beamfornming for effective multipath

suppression; (3) no active dependence on time synchronization

or communication between the radar and RIS; and (4) integrate

seamlessly into the radar’s signal processing pipeline.

2.3 Key Idea: Frequency-Shifting RIS
As a core contribution, our approach delivers on the promise of

NLoS sensing by addressing the critical challenge of preserving

Figure 3: Simulating the presence of three targets and one
passive reflector. The propagation paths and CIRs were ex-
tracted fromWireless InSite.

angular resolution of targets at the RIS along with multipath sup-

pression without requiring an active communication link or syn-

chronization with the radar. We employ a novel spatial modulation

technique which encodes the angle-of-arrival of incident signals

at the RIS into the frequency domain by frequency-shifting based

on spatial cues. By varying the RIS configuration deterministically

at the order of several MHz, we are able to shift signal frequency

and beamform in several directions simultaneously towards the

targets as seen in Fig. 2. This enables both beamforming (multipath

suppression) and preservation of target angular information at the

RIS, while the space-time configurations are locally applied at the

RIS without any real-time coordination with the radar, enabling

practical deployments. The shift in frequency of the RIS-reflected

signals translates to a pseudo-range of 10s of meters in the radar’s

range-doppler profile, which is sufficiently more than the practi-

cal range of the radar, allowing for easier differentiation of the

RIS-reflected signals from the LoS reflections, while allowing for

seamless integration with radar’s existing processing pipeline.

Fig. 3b illustrates an anecdotal deployment of a frequency-shifting

RIS. With the help of spatial modulation, the RIS was configured to

create frequency shifts of 2, 4, and 6 MHz for beamforming (with

a beamwidth of 15°) in the directions of targets 1, 2, and 3 simul-

taneously. Since 2 MHz corresponds to a range offset of 15 meters

(one-way) on the radar’s range profile (much larger than typical

operational range), the 𝑥−axis stretches to span 60 meters. Appear-

ing distinctly within the ranges of [15, 30), [30, 45), [45, 60) meters

respectively, we see 3 sharp and singular peaks, indicating that the

direct path (colored red) between the target and the RIS has been

isolated from the other reflected paths (colored blue).

3 PRISM Design
3.1 PRISM Overview
The design and operation of PRISM is illustrated in Fig. 4.

Configuring the RIS: The first step to making the system opera-

tional is to determine the desired mapping of frequency shifts to

angles-of-arrival at the RIS, i.e., the frequency-space encoding, G∗
.

Sections 3.2 and 4 describe how a time-varying RIS configuration,

named space-time code, satisfies the functionality of a frequency-

space encoding. The space-time code can be locally applied at the

RIS in an environment-agnostic manner since the wider aperture

isolates multipath effects, all without coordination with the radar.
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Figure 4: Overview of PRISM

Figure 5: RIS-reflected targets in the range profile of FMCW
radars capturing forward and backward paths

Our primary objective is to determine the best space-time code that

allows the RIS to create the desired frequency-space encoding. Since

this requires solving a non-linear objective function, we propose an

optimization framework based on genetic algorithm which deter-

mines the most suitable RIS configuration. This space-time code, Φ∗
,

is then programmed into the RIS (one-time), allowing it to create the

desired frequency-space encoding in its reflected signals without

requiring any real-time coordination with the radar, thereby facili-

tating practical deployments. To accommodate the wide bandwidth

(e.g. 1-4 GHz) of mmWave radars, the objective function used in

the genetic algorithm is based on a wideband integral formulation,

which is computationally challenging. To minimize computational

overheads, we approximate the wideband channel with a narrow-

band channel, which we analytically characterize to be of minimal

error through Theorem 4.1.

Seamless RIS Operation with Radar: During operation, the RIS

executes the space-time code as a periodic, time-varying voltage

signal switching the phases of its elements, without any real-time

coordination with the radar. In a typical FMCW (chirp) radar, after

dechirping (described later in Section 3.2) and applying a Fourier

transform to received signals, the radar observes several beat fre-

quencies. These frequencies correspond to discrete peaks in the

range profile, where each peak corresponds to a potential target at

a specific range. However, when a signal is incident on the RIS, the

latter’s angular modulation induces frequency shifts (i.e. harmonics

of 𝑓0) as a function of the incidence angle in the reflected waves.

With 𝑓0 chosen such that RIS-reflected signals occupy a range pro-

file larger than the typical operational range of radars (e.g. 𝑓0 =

Figure 6: Principle of operation of a frequency-shifting RIS

2 MHz corresponds to 15 m), the radar can easily distinguish the

AoA of signals from the RIS and accordingly account for the impact

of RIS for seamless target detection even in NLoS settings using

radar’s existing processing pipeline. As an example, consider an

object in NLoS that is 2 m away and at 0° (normal) from RIS, and the

radar is pointing towards the RIS from 2 m away at −45°, as seen in

Fig. 5. The RIS encodes the signals in harmonics of 2 MHz for every

12°. The signal is reflected off the RIS twice (forward and backward

paths); thus, corresponding to 0°, we get a peak between 30 and 60

m (an object at 12° would map to the range bin 60-90m). With the

total path length through RIS being 8 m (2m between radar-RIS), a

peak appears at a distance of 38 m, revealing a target at an angle of

45° and a distance of 2 m from the RIS.

3.2 PRISMModel
There are three main entities in PRISM as illustrated in Fig. 1: 1) a

mmWave radar, 2) the RIS, and 3) targets.

3.2.1 FMCW Radar Model. A typical mmWave radar transmits an

FMCW waveform and infers the location of the targets from the

reflected signals. 3D point clouds are obtained and processed at the

radar by extracting the range, azimuth and elevation information

encoded in the received signal. In FMCW radars, the difference in

frequencies of the transmitted and received signals is used to find

the signal propagation time, and thus the range and when applied

at a slow timescale across chirps, also reveals doppler [31, 32].

Our proposed solution exploits the fact that the radar infers the

range indirectly through the frequency of the received signal rather

than measuring time-of-flight itself. With a frequency-shifting RIS,

we propose inducing a frequency shift in the signals, thereby adding

to the distance of the object in a deterministic manner. The induced

frequency shift is greater than realistic distances in indoor settings

which enables the radar to identify real ranges from pseudo-ranges.

3.2.2 RIS Model. A typical RIS consists of a large number of tiny

reflectors placed in a two-dimensional planar array as illustrated

in Fig. 6. With the help of a low-cost microcontroller, the reflection

phases of each of these patch elements can be controlled indepen-

dently. Commonly, the reflection coefficient of an element indexed

𝑛 is modeled as a phase change of Φ𝑛 = 𝑒 𝑗𝜑𝑛
[9, 10].

Furthermore, the most prevalent patch antenna element designs

employed by RIS do not have a uniform reflection coefficient across

the operating frequency band [33]. Since commodity mmWave

radars operate over a large bandwidth (1-4 GHz), in our analysis
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we denote the frequency-dependent reflection coefficient (𝑆11 pa-

rameter) of a patch antenna element with the function Γ(𝑓 ). The
functional form of the reflection coefficient is more general than

a communication-oriented subcarrier approach [34, 35]. For our

simulations, we consider the wideband reflection coefficient of a

rectangular patch antenna on a Rogers RO4350B substrate simu-

lated in COMSOL.

Accurately modeling the combined effect of phase shifting and

the wideband reflection coefficient is instrumental in deciding the

configuration of the RIS (further discussed in Section 4).

3.2.3 Channel Model. We present the channel model of PRISM us-

ing geometrically-dependent paths. Note that the channel model’s

role is to capture the RIS’ array pattern and hence depends only

on its structure and not on the environment, thereby requiring

no explicit estimation. Like other beamforming works, our model

considers the far-field channel approximation of uniformly spaced

RIS elements. For a linear array with inter-element spacing 𝑑𝑥 , and

a target at azimuth 𝜃 , we can simplify the relationship between the

channels from elements indexed 𝑛 and 1 as (see Fig. 2),

ℎ𝑛,𝜃 (𝑓 ) = ℎ
1,𝜃 (𝑓 ) exp

{
− 𝑗 2𝜋 𝑓

𝑐
[(𝑛 − 1)𝑑𝑥 sin𝜃 ]

}
. (1)

We validate the far-field channel model using channel traces col-

lected from our testbed and verify that the strongest path follows

Eq. 1. However, there is an additional layer of complexity: the

complex propagation channels are frequency, 𝑓 , dependent. When

the bandwidth of operation is large , the channel coefficients vary

drastically across the operating band. The large variation in chan-

nels creates the well-known problem of beam-squinting which

makes it challenging to provide consistent gain in wideband sys-

tems compared to conventional narrowband systems. To account

for the wideband nature, we propose a model and corresponding

loss function in Section 4.1.2 structured as a matrix-integral over

the bandwidth of operation.

While a radar signal is reflected by the RIS in both directions

(radar-RIS-target, target-RIS-radar) in a NLoS setting (Fig. 2), let us

consider the return path (target-RIS-radar) from a target (say, at

angle 𝜃 ) for easier exposition. Each of these paths can be modeled

as a product of the channel between the target and the RIS element,

the reflection phase of the element, Φ𝑛 , and the channel between

the element and the radar. Since the positions of the radar and

the RIS are fixed, without loss of generality, we can condense the

notation of the aggregate wideband channel into a summation. The

aggregate channel, ℎ𝜃 (𝑓 ), is a superposition of all the individual

propagation paths, given as

ℎ𝜃 (𝑓 ) =
𝑁∑︁
𝑛=1

Φ𝑛Γ(𝑓 )ℎ𝑛,𝜃 (𝑓 ) .

Communication-centric objectives like improving the signal strength

or nulling interference in a particular direction can be achieved

through a suitable choice of Φ𝑛𝑠 , i.e. controlling the phase of the

RIS elements. Similarly, we will define an appropriate objective for

NLoS sensing with radars.

4 Spatial Modulation Framework
First, we introduce the theory of spatial modulation related to

reconfigurable intelligent surfaces. In particular, we detail how a

time-varying configuration satisfies the simultaneous requirement

of frequency-shift and beamforming demanded by the mmWave

radar. However, finding the optimal time-varying configuration

is non-trivial and demands significant computational resources.

Therefore, we present an efficient approximation approach aimed at

simplifying the objective function without sacrificing performance.

Lastly, we propose an optimization framework based on genetic

algorithm thatminimizes the objective functionwhile incorporating

the intricacies and constraints of operating a RIS.

4.1 Spatial Modulation
The overarching goal of spatial modulation in RIS is to create a

frequency-space profile, i.e., to effect a deterministic frequency shift

in a particular direction as illustrated in Fig. 6. The frequency-space

profile, G∗ ∈ {0, 1}𝑀×|Θ |
, is a binary matrix mapping the angles of

incidence on the RIS to the the shift in frequency the RIS creates.

The directions in consideration are a finite set of angles such as

Θ = {−90°,−80°, · · · , 90°}, and the shifts in frequency are a set of

pre-determined harmonics like {𝑓0, · · · , 𝑀 𝑓0}.
It is not possible to shift frequencies using static RIS elements

since the channel remains time-invariant. In order to shift frequen-

cies and beamform in several directions simultaneously, we must

create a controlled, time-variant channel between the targets and

the radar. We vary the complex channel in phase through the appli-

cation of a periodic control signal to each of the RIS elements which

results in a frequency-space profile. The control signal changes the

complex phase, Φ, of the RIS elements. The periodic nature of the

control signal ensures that only harmonic frequencies are excited.

We divide the period, 𝑇 , into 𝐿 time-slots where we assign a com-

plex phase for each of the𝑁 elements as Φ =
[
Φ𝑙,𝑛

]
∈ {±1,± 𝑗}𝐿×𝑁 .

This matrix is termed ‘space-time code’ since it varies the config-

uration of the RIS based on element (space), 𝑛, and (time) slot, 𝑙 .

For the sake of brevity, we omit details pertaining to time-domain

analysis of space-time codes. While [36, 37] explore time-domain

analysis in more detail, they do not consider wideband analysis,

which is central to mmWave radars and in turn forms our focus.

4.1.1 Problem setup. To analytically quantify the overall channel,

we create a matrix, H, of the complex channel coefficients evaluated

as H =
[
ℎ𝑛,𝜃

]
∈ C𝑁×|Θ |

using Equation 1. The rows represent

the variation of the complex channel with the element indices, 𝑛,

while the columns represent the variation with azimuth angle, 𝜃 .

Recall that H is environment-agnostic and captures the RIS’ array

structure that influences the space-time code needed to achieve

the desired frequency-space profile. Signals from several targets

come in from several unique angles towards the RIS. Based on the

angle of incidence, 𝜃 , and the configuration of the RIS, Φ, in that

particular timeslot, 𝑙 , the incident signal undergoes a multiplicative

transformation. The multiplicative factor is the overall time-varying
channel through the RIS. This 𝑙- and 𝜃 -dependent scalar is the sum

over the individual channels of the RIS elements and can be stacked

into a matrix. [∑
𝑛 Φ𝑙,𝑛ℎ𝑛,𝜃

]
= ΦH ∈ C𝐿×|Θ |
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Figure 7: Space-time code resulting in frequency shifts of
𝑓0 = 2 MHz

The time-varying channel is periodic with time period 𝑇 , so we

observe harmonics at multiples of the fundamental frequency 𝑓0 =

1/𝑇 , each of which corresponds to a different 𝜃 . We would like to

quantify the amplitude gain created by the space-time code for a

harmonic multiple𝑚𝑓0 for an angle of incidence 𝜃 . Through Fourier

transformation, we obtain the frequency domain representation

of the time-varying channel. It quantifies the shift in frequency

created, that can be evaluated as

F𝑇
{[∑

𝑛 Φ𝑙,𝑛ℎ𝑛,𝜃
]}

= WΦH (2)

where W is matrix representation of the Fourier transform of a

periodic, piecewise-defined function
1
. For an incident RF signal, the

radar receives several frequency-shifted versions which are scaled

corresponding to the entries in Equation 2.

For instance, consider the space-time code illustrated in Fig. 7.

The RIS in consideration has 16 elements. The period, 𝑇 = 500 ns,

is split into 16 time-slots. For a configuration where each of the RIS

elements is in one of the states {±1,± 𝑗} , we observe harmonics of

the fundamental frequency 𝑓0 = 1/𝑇 = 2MHz. This particular RIS

configuration (Fig. 7a) modulates the incident wave differently for

each of the angles {0°, 11°, 22°, 34°, 45°} onto the different harmonics

(Fig. 7b). The strongest components of the frequency shift are in

multiples of the base frequency. It is also notable that this is a good

configuration since there is minimal leakage of energy into other

directions for any of the beams. While this example considers only

the return path, in a NLoS setting with two-way reflections through

the RIS, the frequency shifts are exactly doubled as shown in Fig. 2.

4.1.2 Defining the Objective Function. Themodulation creates a dy-

namic but controlled propagation environment for themmWave sig-

nals. Critically, we also observe that there is a frequency-dependence

in the amplitude of the modulating wave. Hence, we must rede-

fine the objective problem to better suit wideband operation in the

context of spatial modulation.

We argue that amplitude by itself is an insufficient measure of

the beam pattern. More robustly, the cumulative gain in spectral

energy content is a more suitable measure for the beam pattern.

The total gain in energy carried by the modulating waveform is the

element-wise integral over the bandwidth [𝑓𝐴, 𝑓𝐵] defined as

G(Φ) = 1

𝑓𝐵 − 𝑓𝐴

∫ 𝑓𝐵

𝑓𝐴

∥WΦH(𝑓 )∥2𝑑 𝑓 . (3)

The effective channel matrix is defined as H(𝑓 ) =
[
ℎ𝑛,𝜃 (𝑓 )Γ(𝑓 )

]
to accomodate for the frequency response of the antenna elements.

1
Elements of the Fourier transform matrix of a periodic, piecewise-defined function

can be derived as𝑊𝑛𝑙 =
exp{− 𝑗2𝜋𝑛 (𝑙−1)/𝐿}−exp{− 𝑗2𝜋𝑛𝑙/𝐿}

𝑗2𝜋𝑛
.

The matrix of beam energies, G(Φ), encapsulates both, the angle in
which the incident wave is reflected and the frequency with which

the beam is modulated.

Our formulation defines a mapping from the choice of a space-

time code, Φ, to the resulting wideband beam pattern, G(Φ). We

establish a global optimization framework which is tasked to obtain

the desired beam pattern G∗
by minimizing the Frobenius norm of

the difference between the desired and estimated beam patterns.

Φ∗ = argmin

Φ∈{±1,±𝑗 }𝐿×𝑁
∥G∗ − G(Φ)∥𝐹 (4)

4.2 Efficient Approximation of Wideband
Operation

To solve the optimization problem, the solver must search over

the entire space of possible space-time codes. The solution space

grows exponentially with the size of the RIS and the number of

time-slots in the space-time code. For example, if the RIS is a 16-

element array, 2-bit controllable, and there are 16 time slots, there

are 4
256 ≈ 1.3𝑒154 possible distinct patterns. Additionally, comput-

ing the objective function itself is a hard and inefficient problem

since it involves evaluating at least 256 integrals in each step.

There are several sub-optimal ways to approximate the integral

formulation. For instance, one could partition the interval into dis-

crete units (like a Riemann integral [38]) and evaluate the aggregate.

To get a good approximation, the bandwidth must be divided into

several sub-intervals, which scales poorly for large bandwidths.

Additionally, making the naive assumption that the best approxi-

mation of the channel matrix in Equation 5 is the arithmetic mean

itself, i.e. averaging the channel coefficients over the entire band-

width, is a poor choice as seen in Section 5. While averaging might

work for narrow bandwidths, the assumption does not hold for

larger bandwidths where the mapping from Φ to G is non-linear.

In order to make a more robust approximation while keeping the

order of computational overhead low, we propose approximating

thewideband integral in Equation 5with a spectral energy equalized

channel (Ĥ) as defined in Theorem 4.1.

Ĝ(Φ) = ∥WΦĤ∥2 ≈ 1

𝑓𝐵 − 𝑓𝐴

∫ 𝑓𝐵

𝑓𝐴

∥WΦH(𝑓 )∥2𝑑 𝑓 . (5)

Theorem 4.1. Given amatrix of functionsH(𝑓 ) =
[
h1 (𝑓 ), · · · , h𝑃 (𝑓 )

]
,

its matrix approximationwith the least expected error is Ĥ =

[
ˆh1, · · · , ˆh𝑃

]
where ∀𝑝, ˆh𝑝 can be evaluated by applying Lemma A.1 on h𝑝 (𝑓 ).

Lemma A.1 states that the narrowband approximation with least

expected error,
ˆh ∈ C𝑁

, of any wideband channel vector, h(𝑓 ) ∈
(𝐿2)𝑁 , is the best rank-1 approximation of h(𝑓 )’s auto-correlation
matrix as defined by Equation 10.

Following this approximation step, we propose to minimizing a

new objective function as defined in Equation 7 that is equivalent to

solving Equation 4 to obtain the desired space-time configuration.

Φ∗ = argmin

Φ∈{±1,±𝑗 }𝐿×𝑁
∥G∗ − G(Φ)∥𝐹︸             ︷︷             ︸
difficult to compute

(6)

≈ argmin

Φ∈{±1,±𝑗 }𝐿×𝑁
∥G∗ − Ĝ(Φ)∥𝐹︸             ︷︷             ︸
easy to compute

(7)
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Figure 8: Illustration of GA pseudo-code

4.3 Solving with Genetic Algorithm
While easier to compute, the objective function defined in Equa-

tion 7 is still high-dimensional and non-convex. Constrained by

the 2-bit quantization of the RIS, the solution space of the prob-

lem has been appropriately discretized. This condition curbs the

kind of solvers we can use to find the optimal solution. We cannot

use Moore–Penrose inversion [39] of the matrices since they are

used to compute least-squares solutions which can lie anywhere in

the complex domain. Additionally, we cannot use gradient-descent

since the problem is non-convex and the domain itself is discon-

tinuous. The constraints and formulation of the problem places it

squarely in the territory of global optimization problems without
an analytic solution. A widely-recognized solution methodology

to such hard problems is the class of genetic algorithms. They are

inspired by the process of natural selection, mutation, crossover,

and fitness, all of which are stochastic models.

We now instrument the four primary steps of the genetic algo-

rithm (illustrated in Fig. 8) and tailor it to our RIS problem.

4.3.1 Candidate solutions. The genetic algorithm works with a

large set of candidate solutions/configurations. The phase configu-

ration of the RIS is discrete and complex. However, discrete domains

can create problemswith fast-convergence for the class of genetic al-

gorithms. Hence, wemodel the RIS configuration for each element𝑛

in time-slot 𝑙 as a mapping from the real domain to phase-wrapped,

unit-magnitude complex domain (Φ =
[
𝑒 𝑗𝑥𝑛𝑙

]
, 𝑥𝑛𝑙 ∈ R). Following

this, we map the idealized phase (continuous) to a more realistic

phase (2-bit discretized) by choosing the nearest neighbor. We ini-

tialize the set of candidate solutions (unique 𝑁 × 𝐿 dimensional

vectors) with a population size of 100. The vectors in the set are

picked randomly with a normal distribution.

4.3.2 Natural Selection. First, the algorithm evaluates the ‘fitness’

of each of the candidate solutions with the objective function de-

scribed in Equation 4 and approximated by Equation 7. The smaller

the value of the objective function, the more ‘fit’ a solution is. In

the natural selection step, the fitness of all candidate solutions is

evaluated. Only the top 50% of candidates are preserved, while the

lower half, i.e. the least-fit solutions are pruned.

4.3.3 Mutations. This step effectively adds additive white gaussian
noise to the remaining, most-fit candidate solutions, and helps to

perturb the vector such that it creates a ‘mutation’ effect. The

magnitude of the mutation depends on the variance of the additive

noise, which is a time-decaying function that acts as an additional

annealing stage.

4.3.4 Crossover Methodology. The last step is ‘crossover’ where

the mutated set of solutions are used to repopulate the set of can-

didate solutions for the next iteration. The order in the spatial

and temporal domain of the RIS configuration carries information

about beamforming and frequency shifting respectively. The fit-

ness function is strongly dependent on neighboring elements in the

candidate solutions. Hence, to preserve the positively impacting

spatio-temporal features, we use a two-point crossover methodol-

ogy which retains contiguous sequences of parents. For each pair

of parents, the algorithm chooses a sub-interval of the vector to

crossover. For example, let the parents (𝑎, 𝑏) and child (𝑐) be vectors

of length 𝑁 . Let a randomly chosen sub-interval be (𝑖, 𝑗). Then, the
crossover operation on the parents results in a child 𝑐 s.t.

𝑎 = [𝑎1, · · · , 𝑎𝑖 , · · · , 𝑎𝑁 ], 𝑏 = [𝑏1, · · · , 𝑏 𝑗 , · · ·𝑏𝑁 ],
𝑐 = [𝑎1, · · · , 𝑎𝑖 , 𝑏𝑖+1, · · ·, 𝑏 𝑗 , 𝑎 𝑗+1 · · ·𝑎𝑁 ] .

The entire process loops over several generations until conver-

gence. We terminate the process when the fitness of the candidate

solution does not improve over the span of 500 generations and

select the top performer as the optimal solution to the objective

function. This process usually takes about 10,000 generations to

converge and is a one-time effort prior to deployment.

5 Evaluation
5.1 Evaluation Setup
System Configuration and Signal Generation: To validate our

approach in a real-world environment, we establish a 5G commu-

nication link at 39 GHz using TMYTEK devices [40]. The setup

consists of two TMYTEK UD Box 5G up/down converters, which

translate an 80 MHz intermediate frequency (IF) signal centered

at 2.6 GHz to the 39 GHz carrier frequency. The IF signal is a 5G-

compliant waveform generated by a USRP X410 with an Open Air

Interface (OAI) stack. The UD Box 5G consists of a mixer, internal

local oscillator (LO), and band-pass IF and RF filters, making it well-

suited for operation in the Ka-band (37–40 GHz). The signal, which

comprises of synchronization (SSB), system information (SIB1), and

data blocks, is visualized using a spectrum analyzer as illustrated

in Fig. 9.

Phased Array and Multipath Emulation: For the evaluations,
we employ the TMYTEK BBox 5G, a 4×4 phased-array antenna

with 27 dB Tx/Rx gain. Each element in the array is independently

configurable with a variable gain (0–6 dB) and full 360-degree phase

control. To measure the effect of the multipath channel on the RIS,

we configure the transmitter array with eight distinct phase settings

corresponding to the space-time code deployed at the RIS and cap-

ture channel traces at a receiver where only a single array element

is active. This ensures that the collected channel measurements ac-

curately capture multipath propagation effects while incorporating

the beam-steering effects of the RIS, similar to a radar scenario.

Measurement Procedure:We collected data across multiple an-

gles (-60
𝑜
to 60

𝑜
in 15

𝑜
increments) and distances (1 m to 4 m in 0.5

m increments) to thoroughly characterize multipath interactions in

an indoor setting. To increase the density of the target locations, we

interpolate the collected channel traces using splines. The experi-

mental setup and environment are depicted in Fig. 9. The measured
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Figure 9: Evaluation setup for a) transmitter, b) mobile re-
ceiver unit and indoor environment, c) close-up view of re-
ceiver connected to a spectrum analyzer

channel traces are then imported into MATLAB, where we simulate

the space-time coding RIS using an FMCW waveform sweeping a 2

GHz bandwidth centered at 39 GHz, with a beam sweep duration of

100 microseconds. We supplement our indoor evaluation setup with

two environments (indoor and outdoor) simulated in Wireless In-

Site (WI [14]), a powerful ray-tracing tool to compute the wideband

channel impulse response at millimeter wave frequencies.

RIS: The RIS in consideration is a 16 × 16-element, uniformly-

spaced, two-dimensional array. Each RIS element is a microstrip

patch-antenna modeled similar to [41] at 39 GHz in COMSOL.

The resulting wideband reflection coefficient Γ(𝑓 ) and half-power

beamwidth of 65° on Rogers RO4350B substrate are used in evalua-

tions. Consistent with the examples from Section 3, PRISM’s space-
time code creates five harmonics of the fundamental frequency of

2 MHz, covering the 45° FoV with an angular resolution of 11°. In

the range-doppler analysis, a 2 MHz frequency-shift corresponds

to a psuedo-range of 30 meters.

Baselines:We consider 3 representative baselines. For NLoS sce-

narios, we compare against Metasight [21] which employs multiple

static reflectors for angular information encoding. To emulate its

gray-coding scheme, we divide the field-of-view of 45° in 15 seg-

ments (3° resolution), each with a unique combination of frequency-

shifts. We also consider a static RIS with a broad-beam pattern,

designed to redirect signals from targets towards the radar as il-

lustrated in Fig. 3. Finally, for LoS scenarios, we also consider an

isolated radar (no RIS) to evaluate the benefit of using a RIS either

with (PRISM) or without (static RIS) angular resolution.

5.2 Non Line-of-Sight
The indoor NLoS scenario forms our main focus, thus we use chan-

nels collected from our testbed unless otherwise stated.

5.2.1 Single Target. Fig. 11a illustrates the CDF of the localization
error using channels from the testbed for a single target with PRISM
and two baselines. The mean error of PRISM is 31 cm while that of

Metasight and the static RIS are 103 cm and 115 cm respectively.

PRISM leads to a 3.7−fold and 3.3−fold reduction in error compared

to a static RIS and Metasight respectively. With a static RIS un-

able to shift frequencies, the radar is unable to resolve the angle

of incidence at the RIS, losing out on an important dimension in

Figure 10: Additional test environments constructed in Wire-
less InSite for: a) indoor, b) outdoor scenarios. Multipath
propagation from RIS to sample targets is illustrated.

Figure 11: a) CDF of localization error for a single target in
indoor scenario, b) Heatmap of error of PRISM corresponding
to location (not to scale)

Figure 12: Box plot of localization error for different envi-
ronments using the same RIS configuration

sensing. Metasight suffers indoors due to high multipath whereas

PRISM is able to beamform to targets, thereby minimizing multipath

reflections, and provide angular resolution simultaneously.

Impact of multipath: To further understand the impact of mul-

tipath on schemes that do not employ beamforming, we compare

PRISM to Metasight in outdoor (Fig. 12a) and indoor (Fig. 12b,c)

scenarios with the same configuration at the RIS. Metasight works
only when there exists a singular, strong direct path between the

RIS and targets. However, when there is strong multipath involved,

like in NLoS indoor scenarios that is further amplified by clutter,

Metasight fails to resolve angles accurately. Its performance sub-

stantially degrades (upper-quartile error of 150 cm), rendering it

ineffective. In contrast, PRISM performs well (under 50 cm error) for

both, indoor and outdoor scenarios despite having lower angular

resolution (11° vs 3°), thereby providing robustness to NLoS sensing

even in cluttered indoor scenarios.

Further discussion: The localization error for the target at dif-

ferent locations in the room is illustrated in Fig. 11b using data

from the testbed. Each of the frequency-shifted beams has been

illustrated as different zones in the heatmap. The primary source

of error occurs on the boundaries between two zones where the
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Figure 13: In NLoS scenarios, a) F1-score for resolving two
targets, b) RMSE for counting several targets

algorithm incorrectly assigns the target to a neighboring angle in-

stead. Nevertheless, the target is usually classified in a neighboring

angular bin instead, thereby minimizing the localization error.

5.2.2 Multi-Target. We study PRISM’s ability to detect multiple

targets simultaneously in NLoS scenarios.

Two-target: First, we compare the 𝐹1 score of detecting two

targets as a function of their separation distance in Fig. 13a. PRISM
obtains a detection accuracy greater than 85% (high recall) and an

𝐹1 score greater than 0.90 at a separation of 1.5 m or more, owing

to its ability to resolve targets based on both distance and angle. In

contrast, static RIS can detect (albeit not localize) targets only if they

do not occlude one-another and if they are at different distances,

yielding an 𝐹1 score of 0.8. Metasight suffers from a consistently

high false-positive rate (low precision) owing to misclassification

of singular targets as two-targets because of the high multipath

which leads to a consistently lower 𝐹1 score than PRISM.
N-target: Several practical applications call for detection of

multiple targets (> 2) simultaneously. In Fig. 13, we observe that

the target detection accuracy (normalized RMSE) is about 80% for

PRISM, however the performance of a static RIS drops considerably

when the number of unique targets increases, owing to its reliance

solely on range based target separation, which becomes a limitation

with more targets. The additional angular resolution capability

leads to a significantly better performance in PRISM and Metasight
even for larger number of targets, with PRISM having an edge over

Metasight due to its better multipath mitigation capability.

5.3 Line-of-Sight
We show that the additional angular dimension provided by PRISM
is useful for sensing multiple objects simultaneously even in LoS

environments (Fig. 10b). In addition to static RIS, we also consider

a radar-only baseline that can be effective in LoS. Since Metasight’s
gray-coding framework is not directly realizable for LoS deploy-

ments, it is not considered.

We compare the accuracy of resolving two targets in Fig. 14. A

typical mmWave MIMO radar [42], although has an operational

range of 0.5-5m, has an angular resolution of only 30°, allowing

it to distinguish two targets separated by 0.5 m only if they are

placed within 1 m from the radar. From the 𝐹1 score and RMSE of

“only radar”, we see that the poor angular resolution of a mmWave

radar limits its use in several applications requiring a finer scale of

sensing at large distances. While the static RIS is unable to provide

any angular information, it provides a secondary field-of-view that

augments the radar’s area of detection to improve the detection

performance slightly. However, it is still unable to resolve targets

that are placed close together. In contrast, PRISM enables the radar

Figure 14: In LoS scenarios, a) F1-score for resolving two
targets, b) RMSE for counting several targets

Figure 15: Comparingmethods of obtaining space-time codes
with: (1) localization error; (2) with computation time
to effectively leverage the higher angular resolution of RIS to yield

an 𝐹1 score over 0.9 at a separation of 1 m or more, opening the

door for numerous sensing applications.

5.4 Impact of Narrowband Approximation
For the following experiment, like during practical deployment,

distinct RIS configurations were computed offline on a machine

(i9 @3.5 GHz, 12 cores) using the wideband integral, PRISM’s nar-
rowband approximation, and naive inversion [39] and tested in

the same NLoS environment. This is a one-time computation step

which is agnostic to the environment, thus making it a fixed over-

head during deployment. In Fig. 15a, we see that space-time code

obtained through PRISM’s narrowband approximation performs

just as well as the wideband integral. Furthermore, we can observe

severe degradation in the performance of the space-time code ob-

tained through naive inversion which demonstrates the utility of

the genetic algorithm. However, obtaining the best space-time code

incurs an exponential overhead from the wideband integral compu-

tation required in each iteration of the genetic algorithm (Fig. 15b).

In contrast, PRISM’s narrowband approximation reduces the com-

putation time by 12x with only a small increase in localization error.

6 Conclusion
As mmWave sensing becomes a ubiquitous technology, enabling

robust deployments in indoor settings continues to be a challenge.

To this end, we proposed PRISM, a framework that brings the di-

versity of a passive RIS to even commodity radars through a novel

spatial modulation framework that encodes angular information of

targets in the frequency shifts of RIS’ reflected signals. Extensive

evaluations highlight PRISM’s capability to deliver accurate multi-

target localization capabilities even in NLoS environments, while

seamlessly working with chirp-based radars.

A Appendix
Lemma A.1. For a random weighted-sum operation, given a vec-

tor of square-integrable functions, h(𝑓 ), the complex vector which
approximates it with the lowest expected error is the largest (scaled)
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eigenvector obtained through the rank-1 approximation of the auto-
correlation matrix integral as defined in Equation 10.

Proof.We would like to calculate a vector, ĥ ∈ C𝑁×1
, which ap-

proximates a vector of square-integrable functions, h(𝑓 ) ∈ (𝐿2)𝑁×1
,

with lowest expected error after a scaling operation modeled using

the random vector k ∈ C𝑁×1
.

argmin

ĥ∈C𝑁
E

[����∥ĥk𝑇 ∥2 −
∫

∥h(𝑓 )k𝑇 ∥2𝑑𝑓
����2] (8)

The equation further simplifies to

argmin

ĥ∈C𝑁
E

[����kĥ𝐻 ĥk𝑇 − k
(∫

h𝐻 (𝑓 )h(𝑓 )𝑑𝑓
)

k𝑇
����2] . (9)

Let the autocorrelation matrix, R ∈ C𝑁×𝑁
, be defined as 𝑅𝑖 𝑗 =∫

ℎ𝑖 (𝑓 )ℎ 𝑗 (𝑓 )𝑑 𝑓 . Note R is Hermitian. The equation simplifies to

argmin

ĥ∈C𝑁
E
[���k (

ĥ𝐻 ĥ − R
)

k𝑇
���2] . (10)

The above formulation is reminiscent of the rank-1 factorization

of R. Assuming k is a normally distributed random vector, it is

evident that ĥ is the largest eigenvector of R scaled with the square-

root of the largest eigenvalue.
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