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PRISM: Practical Design and
Orchestration of Frequency-Shifting
RIS for NLoS mmWave Sensing
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NLoS mmWave Sensing

 mmWave sensing deployments suffer due to lack of LoS in most environments
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Outdoor: Buildings cause large-
scale shadowing for dual-function

radar-communication systems Gr %‘eofxgia
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Indoor: Walls and furniture
obstruct LoS for commodity radars
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NLoS mmWave Sensing

 mmWave sensing deployments suffer due to lack of LoS in most environments
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Existing Solutions
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Existing Solutions

- Rely on effective geometric modeling of the
environment
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Ray tracing-based approaches




Existing Solutions

Machine learning-based

- Rely on effective geometric modeling of the approaches
environment

- Deployment of ML models on commodity devices
requires high compute; ML models need to be fine-
tuned to specific environments
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Existing Solutions

- Rely on effective geometric modeling of the RIS-based approaches
environment

- Deployment of ML models on commodity devices
requires high compute; ML models need to be fine-
tuned to specific environments

- Poor (or no) angular resolution with passive reflector
in NLoS regions with large multipath effects

Passive RIS
(Metasurface with fixed
reflection pattern)
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Existing Solutions

- Rely on effective geometric modeling of the RIS-based approaches
environment

- Deployment of ML models on commodity devices
requires high compute; ML models need to be fine-
tuned to specific environments

- Poor (or no) angular resolution with passive reflector
in NLoS regions with large multipath effects

- Active RIS require MIMO and/or fine-time co-
ordination with radar
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Existing Solutions
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Key Requirements

. Resolve angles of incidence signals

simultaneously

. Enable beamforming for multipath

suppression

. No active components / time

synchronization with the radar

. Seamlessly integrate into the
radar’s signal processing
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Basics of FMCW/Chirp Radars

 Frequency Modulated Continuous Wave (FMCW)
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Basics of FMCW/Chirp Radars

« Static RIS only redirects the energy towards the target (beamforming)
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Key Idea: Frequency-shifting with RIS

 Periodically alternating the RIS configuration creates a predictable frequency-
shift
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Key Idea: Frequency-shifting with RIS

 Varying the RIS configuration at finer time-scales can create a second harmonic

frequency in a new direction Typical Received
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Key Idea: Frequency-shifting with RIS

 Precisely controlling the RIS configuration has the potential to create beams in
several directions, each with a different frequency-shift
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Key Idea: Frequency-shifting with RIS

Simultaneous frequency-shifting and beamforming
with RIS satisfies all the key requirements!

FMCW signal Multiple frequency-shifted
generated by radar signals towards targets Resolve angles of incidence signals
ct+2 '
fe+2fo fd fo simultaneously
Enable beamforming for multipath
fe suppression
v
- W N &t W No active components / time
- - - - . synchronization with the radar

Seamlessly integrate into the radar’s
signal processing
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Challenge of Joint Frequency-Shifting and Beamforming

Problem: How to obtain reliable frequency shifting in multiple directions
simultaneously?

Signals reflected Incoming signals from
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Space-Time Modulation Framework

 Analytical model for joint frequency-shifting and beamforming in wideband operation
* RIS Model: S;; parameters

« Channel Model: Wideband delay-line model
- Space-Time Code: Possible reflection coefficients (RIS configurations)

Space -Time Code (phase)

RIS Model ®- g
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Space-Time Modulation Framework

« What time-varying RIS configuration produces frequency-shifts in the desired directions?

» Using a global optimization framework, we solve for the optimal space-time code

Space-Time Code
P

Global Optimization
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Space-Time Coding Framework

* Problem: Computing the wideband integral is the bottleneck

 Solution: Approximate the wideband integral with a narrowband matrix approximation
« Modified low-rank approximation methodology (Theorem 1)

G@) = [WeR? =~ [|WeH()Pdf
Narrowband Wideband
Approximation Integral

« Solve using a global optimizer (like genetic algorithm)

®* = argming,eriq 4 v |GT — G(P)|p Easier to compute,
difficutttocompute non-convex, very
_ high-dimensional
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Evaluations

« Channel traces collected in indoor setup (real-world environment)
« TYMTEK devices at 39 GHz (up-, down-converters, phased array)
» 5G-compliant waveform generated using Open Air Interface

 Evaluations supplemented with additional test environments in Wireless InSite

Mobile Rx Setup RIS Model

Tx
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Evaluations

Non-line-of-sight evaluation study

* PRISM (our work): 5 beams from 0° to 45°; harmonic frequency f, = 2 MHz
» Metasight. Multi-reflector setup with gray-coding for angular resolution

« Static RIS: Single-reflector setup without angular resolution
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Conclusions and Future Directions

Summary
* In mmWave sensing, angular resolution in NLoS regions is a problem
* PRISM proposes to encode the angles of the targets in NLoS regions using pseudo-ranges

* PRISM uses “space-time codes” to jointly beamform and create frequency shifts which translates
to the desired pseudo-ranges

* PRISM seamlessly works with a radar, does not depend on any active components, and resolves
all angles simultaneously

Future Directions

* Encoding angles in frequency-shifts is useful from the perspective of tracking NLoS users in a
mmWave communication setup
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Thank You!



